Open Research Newcastle
Browse

Semigroup C* crossed products and Toeplitz algebras

Download all (522 kB)
thesis
posted on 2025-05-10, 18:24 authored by Mamoon Ali Ahmed
(**Note: this abstract is a plain text version of the author's abstract, the original of which contains characters and symbols which cannot be accurately represented in this format. The properly formatted abstract can be viewed in the Abstract and Thesis files above.**) Let (G,G+) be a quasi-lattice-ordered group with positive cone G+ Laca and Raeburn have shown that the universal C*-algebra C*(G,G+)introduced by Nica is a crossed product BG+ Xɑ G+ by a semigroup of endomorphisms. Subsequent research centered on totally ordered abelian groups. We generalize the results in [2], [3] and [5] to extend it to the case of discrete lattice-ordered abelian groups. In particular given a hereditary subsemigroup H+ of G+ we introduce a closed ideal IH+ of the C*-algebra BG+. We construct an approximate identity for this ideal and show that IH+ is extendibly a-invariant. It follows that there is an isomorphism between C*-crossed products (BG+/IH+) XɑG+ and B(G/H)+ XβG+. This leads to one of our main results that B(G/H)+ XβG+ is realized as an induced C*-algebra IndG-H (B(G/H+ Xt(G/H)+). Then we use this result to show the existence of the following short exact sequence of C*-algebras 0-IH+ XɑG+ → BG+ XɑG+ → IndG-H (B(G/H+ Xt(G/H)+) → 0. This leads to show that the ideal IH+ XɑG+ is generated by {iBG+(1-1u):u∊H+} and therefore contained in the commutator ideal CG of the C*-algebra BG+ XɑG+. Moreover, we use our short exact sequence to study the primitive ideals of the C* algebra BG+ XɑG+ which is isomorphic to the Toeplitz albebra T(G) of G.

History

Year awarded

2007.0

Thesis category

  • Doctoral Degree

Degree

Doctor of Philosophy (PhD)

Supervisors

Pryde, Alan (University of Newcastle)

Language

  • en, English

College/Research Centre

Faculty of Science and Information Technology

School

School of Mathematical and Physical Sciences

Rights statement

Copyright 2007 Mamoon Ali Ahmed

Usage metrics

    Theses

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC