Open Research Newcastle
Browse

VDR gene methylation as a molecular adaption to light exposure: historic, recent and genetic influences

Download (2.99 MB)
journal contribution
posted on 2025-05-08, 19:46 authored by Emma Beckett, Patrice Jones, Martin VeyseyMartin Veysey, Konsta Duesing, Charlotte Martin, John Furst, Zoe YatesZoe Yates, Nina G. Jablonski, George Chaplin, Mark LucockMark Lucock
Objectives: The vitamin D receptor (VDR) is a member of the nuclear receptor family of transcription factors. We examined whether degree of VDR gene methylation acts as a molecular adaptation to light exposure. We explored this in the context of photoperiod at conception, recent UV irradiance at 305 nm, and gene-latitude effects. Methods: Eighty subjects were examined for VDR gene-CpG island methylation density. VDR gene variants were also examined by PCR-RFLP. Results: Photoperiod at conception was significantly positively related to VDR methylation density, explaining 17% of the variance in methylation (r2 = 0.17; P = .001). Within this model, photoperiod at conception and plasma 25(OH)D independently predicted methylation density at the VDR-CpG island. Recent UV exposure at 305 nm led to a fivefold increase in mean methylation density (P = .02). Again, UV exposure and plasma 25(OH)D independently predicted methylation density at the VDR-CpG island. In the presence of the BsmI mutant allele, methylation density was increased (P = .01), and in the presence of the TaqI or FokI mutant allele, methylation density was decreased (P = .007 and .04 respectively). Multivariate modelling suggests plasma 25(OH)D, photoperiod at conception, recent solar irradiance, and VDR genotype combine as independent predictors of methylation at the VDR-CpG island, explaining 34% of the variance in methylation (R2 = 0.34, P < .0001). Conclusions: Duration of early-life light exposure and strength of recent irradiance, along with latitudinal genetic factors, influence degree of VDR gene methylation consistent with this epigenetic phenomenon being a molecular adaptation to variation in ambient light exposure. Findings contribute to our understanding of human biology.

Funding

ARC

G0188386

History

Journal title

American Journal of Human Biology

Volume

29

Issue

5

Article number

e23010

Publisher

Wiley-Blackwell Publishing

Language

  • en, English

College/Research Centre

Faculty of Science

School

School of Environmental and Life Sciences

Rights statement

This is the pre-peer reviewed version of above article, which has been published in final form at http://dx.doi.org/10.1002/ajhb.23010. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC