Open Research Newcastle
Browse

Toward a reliable decomposition of predictive uncertainty in hydrological modeling: characterizing rainfall errors using conditional simulation

Download (2.28 MB)
journal contribution
posted on 2025-05-09, 09:33 authored by Benjamin Renard, Dmitri Kavetski, Etienne Leblois, Mark Thyer, George KuczeraGeorge Kuczera, Stewart W. Franks
This study explores the decomposition of predictive uncertainty in hydrological modeling into its contributing sources. This is pursued by developing data-based probability models describing uncertainties in rainfall and runoff data and incorporating them into the Bayesian total error analysis methodology (BATEA). A case study based on the Yzeron catchment (France) and the conceptual rainfall-runoff model GR4J is presented. It exploits a calibration period where dense rain gauge data are available to characterize the uncertainty in the catchment average rainfall using geostatistical conditional simulation. The inclusion of information about rainfall and runoff data uncertainties overcomes ill-posedness problems and enables simultaneous estimation of forcing and structural errors as part of the Bayesian inference. This yields more reliable predictions than approaches that ignore or lump different sources of uncertainty in a simplistic way (e.g., standard least squares). It is shown that independently derived data quality estimates are needed to decompose the total uncertainty in the runoff predictions into the individual contributions of rainfall, runoff, and structural errors. In this case study, the total predictive uncertainty appears dominated by structural errors. Although further research is needed to interpret and verify this decomposition, it can provide strategic guidance for investments in environmental data collection and/or modeling improvement. More generally, this study demonstrates the power of the Bayesian paradigm to improve the reliability of environmental modeling using independent estimates of sampling and instrumental data uncertainties.

History

Journal title

Water Resources Research

Volume

47

Publisher

American Geophysical Union

Language

  • en, English

College/Research Centre

Faculty of Engineering and Built Environment

School

School of Engineering

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC