Open Research Newcastle
Browse

Theoretical and experimental investigation into the moisture migration characteristics of coal during oscillatory motion

Download (987.44 kB)
journal contribution
posted on 2025-05-11, 15:44 authored by Jian Chen, Kenneth WilliamsKenneth Williams, Jie GuoJie Guo, Wei Chen
It is a common occurrence that the moisture migrates during coal handling, such as storage, conveying and shipping. This results in a non-uniform moisture distribution giving rise to problems in handling. Current theories and mathematical models are mainly focused on static moisture migration, which is not suitable for dynamic moisture migration scenarios. To find out how moisture migrates in coal during oscillatory like motion, a theoretical model is established based on the Green-Ampt equation. The theoretical model assumes that hydraulic conductivity is an average value and water can be drained from the bottom. An oscillation factor is introduced to the hydraulic conductivity to suit the oscillation condition and a water-voids ratio is added to suit the model in an unsaturated drainage. These factors, including water based particle density, free drained saturation (FDS) moisture content, particle size distribution, are obtained through experiments. The predicted value of drained water from the theoretical model is validated by shipping log data of drained water from coal, which proves the model is practicable for calculating the mass of drained water of coal during oscillatory like motion.

History

Journal title

Powder Technology

Volume

342

Pagination

764-772

Publisher

Elsevier

Language

  • en, English

College/Research Centre

Faculty of Engineering and Built Environment

School

School of Engineering

Rights statement

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC