Open Research Newcastle
Browse

The utility of vitellogenin as a biomarker of estrogenic endocrine disrupting chemicals in molluscs

Download (1.66 MB)
journal contribution
posted on 2025-05-08, 21:34 authored by Thi Kim TranThi Kim Tran, Man Kit Richard YuMan Kit Richard Yu, Rafiquel IslamRafiquel Islam, Thi Hong Tham Nguyen, Thi Lien Ha Bui, Richard Yuen Chong Kong, Wayne O'ConnorWayne O'Connor, Frederic D. L. Leusch, Megan Andrew-Priestley, Geoffrey MacFarlaneGeoffrey MacFarlane
Estrogenic endocrine disrupting chemicals (EDCs) are natural hormones, synthetic compounds or industrial chemicals that mimic estrogens due to their structural similarity with estrogen's functional moieties. They typically enter aquatic environments through wastewater treatment plant effluents or runoff from intensive livestock operations. Globally, most natural and synthetic estrogens in receiving aquatic environments are in the low ng/L range, while industrial chemicals (such as bisphenol A, nonylphenol and octylphenol) are present in the μg to low mg/L range. These environmental concentrations often exceed laboratory-based predicted no effect concentrations (PNECs) and have been evidenced to cause negative reproductive impacts on resident aquatic biota. In vertebrates, such as fish, a well-established indicator of estrogen-mediated endocrine disruption is overexpression of the egg yolk protein precursor vitellogenin (Vtg) in males. Although the vertebrate Vtg has high sensitivity and specificity to estrogens, and the molecular basis of its estrogen inducibility has been well studied, there is growing ethical concern over the use of vertebrate animals for contaminant monitoring. The potential utility of the invertebrate Vtg as a biomonitor for environmental estrogens has therefore gained increasing attention. Here we review evidence providing support that the molluscan Vtg holds promise as an invertebrate biomarker for exposure to estrogens. Unlike vertebrates, estrogen signalling in invertebrates remains largely unclarified and the classical genomic pathway only partially explains estrogen-mediated activation of Vtg. In light of this, in the latter part of this review, we summarise recent progress towards understanding the molecular mechanisms underlying the activation of the molluscan Vtg gene by estrogens and present a hypothetical model of the interplay between genomic and non-genomic pathways in the transcriptional regulation of the gene.

History

Journal title

Environmental Pollution

Volume

248

Issue

May 2019

Pagination

1067-1078

Publisher

Elsevier

Language

  • en, English

College/Research Centre

Faculty of Science

School

School of Environmental and Life Sciences

Rights statement

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.