Open Research Newcastle
Browse

The synthesis, secretion and uptake of prorenin in human amnion

Download (613.03 kB)
journal contribution
posted on 2025-05-10, 12:30 authored by Kirsty PringleKirsty Pringle, Yu Wang, Eugenie LumbersEugenie Lumbers
Very high concentrations of prorenin protein occur in human amniotic fluid and amnion. The source of amniotic fluid prorenin is likely the decidua, as it has the highest levels of prorenin mRNA (REN). Conversely, REN mRNA levels in amnion and chorion are very low. This study aimed to investigate whether decidual prorenin could cross the amnion and accumulate in amniotic fluid. Late gestation amnion was incubated for 24 h in the presence or absence of recombinant human (rh)prorenin. REN mRNA abundance was determined by qPCR and prorenin protein levels in the supernatant and tissue were measured by an ELISA. Prior to incubation only 3/11 amnion samples had REN mRNA but measurable levels of prorenin protein were found (1.4 ng/mg total protein). After 24 h incubation, REN mRNA was found in all explants and levels were significantly increased (P = 0.03) but prorenin protein levels in amnion were unchanged. Prorenin protein levels in the supernatant were, however, increased (P = 0.048). Incubation with (rh)prorenin significantly increased amnion tissue prorenin levels (2.8 ng/mg total protein, P = 0.001); REN mRNA levels were unchanged. Therefore, amnion explants express small amounts of REN and secrete prorenin protein. Prorenin is also taken up by amnion. We postulate that the amniotic renin angiotensin system (RAS) alters pregnancy outcome through effects on gestation length and amniotic fluid volume. Since human amnion can take up and secrete prorenin protein, the activity of both amnion and amniotic fluid RASs can be amplified by prorenin produced by other intrauterine tissues.

Funding

NHMRC

514706

History

Journal title

Physiological Reports

Volume

3

Issue

4

Publisher

John Wiley & Sons

Language

  • en, English

College/Research Centre

Faculty of Health and Medicine

School

School of Biomedical Sciences and Pharmacy

Rights statement

© 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Usage metrics

    Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC