Open Research Newcastle
Browse

The fate of porcine sperm CRISP2 from the perinuclear theca before and after in vitro fertilization

Download (1.18 MB)
journal contribution
posted on 2025-05-10, 20:24 authored by Min Zhang, Elizabeth BromfieldElizabeth Bromfield, J. Bemd Helms, Bart M. Gadella
In a previous study, we reported that porcine sperm cysteine-rich secretory protein 2 (CRISP2) is localized in the post-acrosomal sheath-perinuclear theca (PT) as reduction-sensitive oligomers. In the current study, the decondensation and removal of CRISP2 was investigated during in vitro sperm capacitation, after both the induction of the acrosome reaction and in vitro fertilization. Confocal immunofluorescent imaging revealed that additional CRISP2 fluorescence appeared on the apical ridge and on the equatorial segment (EqS) of the sperm head following capacitation, likely due to cholesterol removal. After an ionophore A23187-induced acrosome reaction, CRISP2 immunofluorescence disappeared from the apical ridge and the EqS area partly not only owing to the removal of the acrosomal shroud vesicles, but to its presence in a subdomain of EqS. The fate of sperm head CRISP2 was further examined post-fertilization. In vitro matured porcine oocytes were co-incubated with boar sperm cells for 6–8 h and the zygotes were processed for CRISP2 immunofluorescent staining. Notably, decondensation of CRISP2, and thus of the sperm PT, occurred while the sperm nucleus was still fully condensed. CRISP2 was no longer detectable in fertilized oocytes in which sperm nuclear decondensation and paternal pronucleus formation were apparent. This rapid dispersal of CRISP2 in the PT is likely regulated by redox reactions for which its cysteine-rich domain is sensitive. Reduction of disulfide bridges within CRISP2 oligomers may be instrumental for PT dispersal and elimination.

Funding

NHMRC

APP1138701

History

Journal title

Biology of Reproduction

Volume

107

Issue

5

Pagination

1242-1253

Publisher

Oxford University Press

Language

  • en, English

College/Research Centre

College of Engineering, Science and Environment

School

School of Environmental and Life Sciences

Rights statement

© The Author(s) 2022. Published by Oxford University Press behalf of Society for the Study of Reproduction. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Usage metrics

    Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC