Open Research Newcastle
Browse

The effect of salt dosing for chytrid mitigation on tadpoles of a threatened frog, Litoria aurea

Download (708.59 kB)
journal contribution
posted on 2025-05-10, 20:01 authored by Alexandra CallenAlexandra Callen, Ligia Pizzatto, Michelle P. Stockwell, Simon ClulowSimon Clulow, John ClulowJohn Clulow, Michael MahonyMichael Mahony
The novel fungal pathogen Batrachochytrium dendrobatidis (chytrid) is one of the greatest threats to amphibians worldwide. Small increases in water salinity (up to ca. 4 ppt) have been shown to limit chytrid transmission between frogs, potentially providing a way to create environmental refugia to reduce its impact at a landscape scale. However, the effect of increasing water salinity on tadpoles, a life stage confined to water, is highly variable. Increased water salinity can lead to reduced size and altered growth patterns in some species, with flow-on effects to vital rates such as survival and reproduction. It is thus important to assess potential trade-offs caused by increasing salinity as a tool to mitigate chytrid in susceptible frogs. We conducted laboratory experiments to examine the effects of salinity on the survival and development of tadpoles of a threatened frog (Litoria aurea), previously demonstrated as a suitable candidate for trialling landscape manipulations to mitigate chytrid. We exposed tadpoles to salinity ranging from 1 to 6 ppt and measured survival, time to metamorphosis, body mass and locomotor performance of post-metamorphic frogs as a measure of fitness. Survival and time to metamorphosis did not differ between salinity treatments or controls reared in rainwater. Body mass was positively associated with increasing salinity in the first 14 days. Juvenile frogs from three salinity treatments also showed the same or better locomotor performance compared to rainwater controls, confirming that environmental salinity may influence life history traits in the larval stage, potentially as a hormetic response. Our research suggests that salt concentrations in the range previously shown to improve survival of frogs in the presence of chytrid are unlikely to impact larval development of our candidate threatened species. Our study lends support to the idea of manipulating salinity to create environmental refugia from chytrid for at least some salt-tolerant species.

History

Journal title

Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology

Volume

193

Issue

2

Pagination

239-247

Publisher

Springer

Language

  • en, English

College/Research Centre

College of Engineering, Science and Environment

School

School of Environmental and Life Sciences

Rights statement

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Usage metrics

    Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC