Open Research Newcastle
Browse

The effect of landform variation on vegetation patterning and related sediment dynamics

Download (1.47 MB)
journal contribution
posted on 2025-05-10, 19:35 authored by Jantiene E. M. Baartman, Arnaud J. A. M. Temme, Patricia M. Saco
Semi-arid ecosystems are often spatially self-organized in typical patterns of vegetation bands with high plant cover interspersed with bare soil areas, also known as "tiger bush". In modelling studies, most often, straight planar slopes were used to analyse vegetation patterning. The effect of slope steepness has been investigated widely, and some studies investigated the effects of microtopography and hillslope orientation. However, at the larger catchment scale, the overall form of the landscape may affect vegetation patterning and these more complex landscapes are much more prevalent than straight slopes. Hence, our objective was to determine the effect of landform variation on vegetation patterning and sediment dynamics. We linked two well-established models that simulate (a) plant growth, death and dispersal of vegetation, and (b) erosion and sedimentation dynamics. The model was tested on a straight planar hillslope and then applied to (i) a set of simple synthetic topographies with varying curvature and (ii) three more complex, real-world landscapes of distinct morphology. Results show banded vegetation patterning on all synthetic topographies, always perpendicular to the slope gradient. Interestingly, we also found that movement of bands - a debated phenomenon - seems to be dependent on curvature. Vegetation banding was simulated on the slopes of the alluvial fan and along the valley slopes of the dissected and rolling landscapes. In all landscapes, local valleys developed a full vegetation cover induced by water concentration, which is consistent with observations worldwide. Finally, banded vegetation patterns were found to reduce erosion significantly as compared to other vegetation configurations.

Funding

ARC

FT140100610

DP140104178

History

Journal title

Earth Surface Processes and Landforms

Volume

43

Issue

10

Pagination

2121-2135

Publisher

John Wiley & Sons

Place published

Oxford, UK

Language

  • en, English

College/Research Centre

Faculty of Engineering and Built Environment

School

School of Engineering

Rights statement

© 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Usage metrics

    Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC