Open Research Newcastle
Browse

Super-resolution fluorescence imaging of arabidopsis thaliana transfer cell wall ingrowths using pseudo-schiff labelling adapted for the use of different dyes

Download (3.49 MB)
journal contribution
posted on 2025-05-11, 23:44 authored by Angus E. Rae, Xiaoyang Wei, Neftali Flores-Rodriguez, David W. McCurdy, David CollingsDavid Collings
To understand plant growth and development, it is often necessary to investigate the organization of plant cells and plant cell walls. Plant cell walls are often fluorescently labeled for confocal imaging with the dye propidium iodide using a pseudo-Schiff reaction. This reaction binds free amine groups on dye molecules to aldehyde groups on cellulose that result from oxidation with periodic acid. We tested a range of fluorescent dyes carrying free amine groups for their ability to act as pseudo-Schiff reagents. Using the low-pH solution historically used for the Schiff reaction, these alternative dyes failed to label cell walls of Arabidopsis cotyledon vascular tissue as strongly as propidium iodide but replacing the acidic solution with water greatly improved fluorescence labeling. Under these conditions, rhodamine-123 provided improved staining of plant cell walls compared to propidium iodide. We also developed protocols for pseudo-Schiff labeling with ATTO 647N-amine, a dye compatible for super-resolution Stimulated Emission Depletion (STED) imaging. ATTO 647N-amine was used for super-resolution imaging of cell wall ingrowths that occur in phloem parenchyma transfer cells of Arabidopsis, structures whose small size is only slightly larger than the resolution limit of conventional confocal microscopy. Application of surface-rendering software demonstrated the increase in plasma membrane surface area as a consequence of wall ingrowth deposition and suggests that STED-based approaches will be useful for more detailed morphological analysis of wall ingrowth formation. These improvements in pseudo-Schiff labeling for conventional confocal microscopy and STED imaging will be broadly applicable for high-resolution imaging of plant cell walls.

History

Journal title

Plant and Cell Physiology

Volume

61

Issue

10

Pagination

1775-1787

Publisher

Oxford University Press

Language

  • en, English

College/Research Centre

College of Engineering, Science and Environment

School

School of Environmental and Life Sciences

Rights statement

This is a pre-copyedited, author-produced version of an article accepted for publication in FEMS Microbiology Ecology following peer review. The version of record Rae, Angus E.; Wei, Xiaoyang; Flores-Rodriguez, Neftali; McCurdy, David W.; Collings, David A. " Super-resolution fluorescence imaging of arabidopsis thaliana transfer cell wall ingrowths using pseudo-schiff labelling adapted for the use of different dyes”. Published in Plant and Cell Physiology Vol. 61, Issue 10, p. 1775-1787 (2021), is available online at: http://dx.doi.org/10.1093/PCP/PCAA102.

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC