This paper presents an experimental study on quantifying the effects of soil suction on the resistance offered by compacted unsaturated backfills to uplift of buried steel pipes and identifying the mechanisms that contribute to increased resistance compared to similar pipes buried in dry sand. This is achieved by means of 1-g physical model experiments, with the pipe buried in sandy loam–Kaolin soil beds of varying water content (suction), compacted to the same dry unit weight. The main experiments are supplemented by benchmarking experiments performed in dry sand of similar grain size distribution, as well as in compacted soil beds inundated with water to achieve conditions close to full saturation. The experiments are supported by a detailed characterisation study of compacted sandy loam–Kaolin mixtures and mini-CPT tests performed to evaluate the uniformity of the soil beds. Measurements of the reaction developing on the pipe as function of its uplift displacement are co-evaluated together with images of the failure mechanisms obtained using particle image velocimetry and continuous measurements of soil matrix suction. We conclude with a simplified method to predict the peak reaction to pipe uplift that allows considering the contribution of suction and the tensile–shear failure mechanism observed during the experiments.