Open Research Newcastle
Browse

Structure of coal-derived metal-supported few-layer graphene composite materials synthesized using a microwave-assisted catalytic graphitization process

Download (1.89 MB)
journal contribution
posted on 2025-05-10, 18:54 authored by Faridul Islam, Arash TahmasebiArash Tahmasebi, Rou Wang, Jianglong Yu
Metal-supported few-layer graphene (FLG) was synthesized via microwave-assisted catalytic graphitization owing to the increasing demand for it and its wide applications. In this study, we quickly converted earth-abundant and low-cost bituminous coal to FLG over Fe catalysts at a temperature of 1300 °C. X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and N2 adsorption–desorption experiments were performed to analyze the fabricated metal-supported FLG. The results indicated that the microwave-irradiation temperature at a set holding-time played a critical role in the synthesis of metal-supported FLG. The highest degree of graphitization and a well-developed pore structure were fabricated at 1300 °C using a S10% Fe catalyst for 20 min. High-resolution transmission electron microscopy analysis confirmed that the metal-supported FLG fabricated via microwave-assisted catalytic graphitization consisted of 3–6 layers of graphene nanosheets. In addition, the 2D band at 2700 cm−1 in the Raman spectrum of the fabricated metal-supported FLG samples were observed, which indicated the presence of few-layer graphene structure. Furthermore, a mechanism was proposed for the microwave-assisted catalytic graphitization of bituminous coal. Here, we developed a cost-effective and environmental friendly metal-supported FLG method using a coal-based carbonaceous material.

History

Journal title

Nanomaterials

Volume

11

Issue

7

Article number

1672

Publisher

MDPI AG

Language

  • en, English

College/Research Centre

College of Engineering, Science and Environment

School

School of Engineering

Rights statement

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/)

Usage metrics

    Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC