This study focused on the structural investigation of few-layer graphene (FLG) synthesis from bituminous coal through a catalytic process under microwave heat treatment (MW). The produced FLG has been examined by Raman spectroscopy, XRD, TEM, and AFM. Coal was activated using the potassium hydroxide activation process. The FLG synthesis processing duration was much faster requiring only 20 min under the microwave radiation. To analyse few-layer graphene samples, we considered the three bands, i.e., D, G, and 2D, of Raman spectra. At 1300 °C, the P10% Fe sample resulted in fewer defects than the other catalyst percentages sample. The catalyst percentages affected the structural change of the FLG composite materials. In addition, the Raman mapping showed that the catalyst loaded sample was homogeneously distributed and indicated a few-layer graphene sheet. In addition, the AFM technique measured the FLG thickness around 4.5 nm. Furthermore, the HRTEM images of the P10% Fe sample contained a unique morphology with 2–7 graphitic layers of graphene thin sheets. This research reported the structural revolution with latent feasibility of FLG synthesis from bituminous coal in a wide range.
History
Journal title
Nanomaterials
Volume
12
Issue
1
Article number
57
Publisher
MDPI AG
Language
en, English
College/Research Centre
College of Engineering, Science and Environment
School
School of Engineering
Rights statement
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0/