Open Research Newcastle
Browse

Stability of blocked replication forks in vivo

Download (4.92 MB)
journal contribution
posted on 2025-05-09, 12:27 authored by Karla A. Mettrick, Ian GraingeIan Grainge
Replication of chromosomal DNA must be carried out to completion in order for a cell to proliferate. However, replication forks can stall during this process for a variety of reasons, including nucleoprotein 'roadblocks' and DNA lesions. In these circumstances the replisome copying the DNA may disengage from the chromosome to allow various repair processes to restore DNA integrity and enable replication to continue. Here, we report the in vivo stability of the replication fork when it encounters a nucleoprotein blockage in Escherichia coli. Using a site-specific and reversible protein block system in conjunction with the temperature sensitive DnaC helicase loader and DnaB replicative helicase, we monitored the disappearance of the Y-shaped DNA replication fork structures using neutral-neutral 2D agarose gels. We show the replication fork collapses within 5 min of encountering the roadblock. Therefore, the stalled replication fork does not pause at a block in a stable confirmation for an extended period of time as previously postulated.

Funding

ARC

DP11010246

History

Journal title

Nucleic Acids Research

Volume

44

Issue

2

Pagination

657-668

Publisher

Oxford University Press

Language

  • en, English

College/Research Centre

Faculty of Science and Information Technology

School

School of Environmental and Life Sciences

Rights statement

©The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Usage metrics

    Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC