Open Research Newcastle
Browse

Sputum macrophage diversity and activation in asthma: Role of severity and inflammatory phenotype

Download (1.81 MB)
journal contribution
posted on 2025-05-09, 01:56 authored by Angelica Tiotiu, Nazanin Zounemat Kermani, Yusef Badi, Stelios Pavlidis, Philip Hansbro, Yi-Ke Guo, Kian Fan Chung, Ian M. Adcock
Background: Macrophages control innate and acquired immunity, but their role in severe asthma remains ill-defined. We investigated gene signatures of macrophage subtypes in the sputum of 104 asthmatics and 16 healthy volunteers from the U-BIOPRED cohort. Methods: Forty-nine gene signatures (modules) for differentially stimulated macrophages, one to assess lung tissue-resident cells (TR-Mφ) and two for their polarization (classically and alternatively activated macrophages: M1 and M2, respectively) were studied using gene set variation analysis. We calculated enrichment scores (ES) across severity and previously identified asthma transcriptome-associated clusters (TACs). Results: Macrophage numbers were significantly decreased in severe asthma compared to mild-moderate asthma and healthy volunteers. The ES for most modules were also significantly reduced in severe asthma except for 3 associated with inflammatory responses driven by TNF and Toll-like receptors via NF-κB, eicosanoid biosynthesis via the lipoxygenase pathway and IL-2 biosynthesis (all P<.01). Sputum macrophage number and the ES for most macrophage signatures were higher in the TAC3 group compared to TAC1 and TAC2 asthmatics. However, a high enrichment was found in TAC1 for 3 modules showing inflammatory pathways linked to Toll-like and TNF receptor activation and arachidonic acid metabolism (P<.001) and in TAC2 for the inflammasome and interferon signalling pathways (P<.001). Data were validated in the ADEPT cohort. Module analysis provides additional information compared to conventional M1 and M2 classification. TR-Mφ were enriched in TAC3 and associated with mitochondrial function. Conclusions: Macrophage activation is attenuated in severe granulocytic asthma highlighting defective innate immunity except for specific subsets characterized by distinct inflammatory pathways.

History

Journal title

Allergy: European Journal of Allergy and Clinical Immunology

Volume

76

Issue

3

Pagination

775-788

Publisher

Wiley-Blackwell

Language

  • en, English

College/Research Centre

College of Health, Medicine and Wellbeing

School

School of Biomedical Sciences and Pharmacy

Rights statement

This is an open access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2020 The Authors.

Usage metrics

    Publications

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC