Open Research Newcastle
Browse

Shikonin induces programmed death of fibroblast synovial cells in rheumatoid arthritis by inhibiting energy pathways

Download (6.59 MB)
journal contribution
posted on 2025-05-10, 19:44 authored by Jiahui Li, Jinglong Pang, Zhe Liu, XianMing Ge, Yanan Zhen, Chen Chen JiangChen Chen Jiang, Yaming Liu, Qiang Huo, Yiming Sun, Hao Liu
Shikonin is the main component of the traditional Chinese medicine comfrey, which can inhibit the activity of PKM2 by regulating glycolysis and ATP production. Rheumatoid arthritis synovial cells (RA-FLSs) have been reported to increase glycolytic activity and have other similar hallmarks of metabolic activity. In this study, we investigated the effects of shikonin on glycolysis, mitochondrial function, and cell death in RA-FLSs. The results showed that shikonin induced apoptosis and autophagy in RA-FLSs by activating the production of reactive oxygen species (ROS) and inhibiting intracellular ATP levels, glycolysis-related proteins, and the PI3K-AKT-mTOR signaling pathway. Shikonin can significantly reduce the expression of apoptosis-related proteins, paw swelling in rat arthritic tissues, and the levels of inflammatory factors in peripheral blood, such as TNF-α, IL-6, IL-8, IL-10, IL-17A, and IL-1β while showing less toxicity to the liver and kidney.

History

Journal title

Scientific Reports

Volume

11

Issue

1

Article number

18263

Publisher

Nature Publishing Group

Language

  • en, English

College/Research Centre

College of Health, Medicine and Wellbeing

School

School of Biomedical Sciences and Pharmacy

Rights statement

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Usage metrics

    Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC