Open Research Newcastle
Browse

Sensor fusion for improved control of piezoelectric tube scanners

Download (743.81 kB)
journal contribution
posted on 2025-05-10, 18:31 authored by Andrew FlemingAndrew Fleming, Adrian WillsAdrian Wills, S. O. Reza Moheimani
In nanopositioning applications, capacitive or inductive sensors are used to measure displacement and provide feedback to eliminate actuator nonlinearity, dynamics, cross-coupling between axes, and thermal drift. Due to their noise density, typically 20 pm/radicHz for 100-mum range transducers, feedback loops are restricted to a few tens of Hertz if nanometer precision is required. In this study, a capacitive displacement sensor is used with a piezoelectric strain voltage measurement to reduce sensor noise at frequencies above 1 Hz. The piezoelectric strain voltage is derived from an open-circuit electrode on a four-quadrant piezoelectric tube actuator and requires no additional hardware. The noise density of the piezoelectric strain voltage is measured to be three orders of magnitude lower than the capacitive sensor. This allows a large increase in closed-loop bandwidth with no penalty on sensor-induced noise. The advantageous properties of the capacitive sensor and piezoelectric strain voltage are discussed and utilized to design a Kalman filter that combines the two signals in a statistically optimal way. A receding horizon control strategy is then introduced as a technique for controlling the tube scanner. A wide-bandwidth controller is implemented that provides reference tracking and damping of the actuator resonance, with root-mean-square displacement noise below 0.4 nm.

History

Journal title

IEEE Transactions on Control Systems Technology

Volume

16

Issue

6

Pagination

1265-1276

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Language

  • en, English

College/Research Centre

Faculty of Engineering and Built Environment

School

School of Electrical Engineering and Computer Science

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC