Open Research Newcastle
Browse

Robust stability of packetized predictive control of nonlinear systems with disturbances and Markovian packet losses

Download (228 kB)
journal contribution
posted on 2025-05-10, 23:43 authored by Daniel E. Quevedo, Dragan Nešić
We study a predictive control formulation for uncertain discrete-time non-linear uniformly continuous plant models where controller output data is transmitted over an unreliable communication channel. The channel introduces Markovian data-loss and does not provide acknowledgments of receipt. To achieve robustness with respect to dropouts, at every sampling instant the controller transmits packets of data. These contain possible control inputs for a finite number of future time instants, and minimize a finite horizon cost function. At the actuator side, received packets are buffered, providing the plant inputs. Within this context, we adopt a stochastic Lyapunov function approach to establish stability results of the networked control system. A distinguishing aspect of this work is that it considers situations where the maximum number of consecutive packet dropouts has unbounded support.

History

Journal title

Automatica

Volume

48

Issue

8

Pagination

1803-1811

Publisher

Elsevier

Language

  • en, English

College/Research Centre

Faculty of Engineering and Built Environment

School

School of Electrical Engineering and Computer Science

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC