Open Research Newcastle
Browse

Random subgroups of Thompson’s group F

Download (518.47 kB)
journal contribution
posted on 2025-05-10, 23:32 authored by Sean Cleary, Murray Elder, Andrew Rechnitzer, Jennifer Taback
We consider random subgroups of Thompson’s group F with respect to two natural stratifications of the set of all k-generator subgroups. We find that the isomorphism classes of subgroups which occur with positive density are not the same for the two stratifications. We give the first known examples of persistent subgroups, whose isomorphism classes occur with positive density within the set of k-generator subgroups, for all sufficiently large k. Additionally, Thompson’s group provides the first example of a group without a generic isomorphism class of subgroup. Elements of F are represented uniquely by reduced pairs of finite rooted binary trees. We compute the asymptotic growth rate and a generating function for the number of reduced pairs of trees, which we show is D-finite (short for differentiably finite) and not algebraic. We then use the asymptotic growth to prove our density results.

History

Journal title

Groups, Geometry, Dynamics

Volume

4

Issue

1

Pagination

91-126

Publisher

European Mathematical Society (EMS) Publishing House

Language

  • en, English

College/Research Centre

Faculty of Science and Information Technology

School

School of Mathematical and Physical Sciences

Usage metrics

    Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC