The automated detection of aspects of spatial behaviour in an agent-based model is necessary for model testing and analysis. In this paper we compare four predictors of herding behaviour in a model of a grazing herbivore. We find that a) the mean number of neighbours adjusted to account for population variation and b) the mean Hamming distance between rows of the two-dimensional environment can be used to detect herding. Visual inspection of the model behaviour revealed that herding occurs when the herbivore mobility reaches a threshold level. Using this threshold we identify a limits for these predictors to use in the program code. These results apply only to one set of parameters and environment size; future research will involve a wider parameter space.
History
Journal title
Information Technology in Industry
Volume
2
Issue
2
Pagination
38-43
Publisher
IT In Industry
Language
en, English
College/Research Centre
Faculty of Science and Information Technology
School
School of Design, Communication and Information Technology