Elevated histamine (HTM) levels are closely linked to food poisoning as well as to pathophysiological allergic diseases. In this study, HTM-imprinted, solution-processable microspheres were prepared via high-dilution conventional thermal polymerization (CTP) and controlled radical polymerization (CRP) using ethylene glycol dimethacrylate (80 or 90 wt %) and methacrylic acid at 60 °C in acetonitrile and evaluated as recognition materials for sensing applications. The polymers were selective to HTM in binding studies, cross-rebinding, and competitive binding assays against the HTM analogues histidine, imidazole, and tryptamine. The selective binding capacity was significantly higher with CTP-80 (on the basis of mass: 21.0 μmol/g and surface area: 8.08 × 10-2 μmol/m2) than that with both CTP-90 (8.47 μmol/g, 4.49 × 10–2 μmol/m2) and CRP-80 (9.00 μmol/g, 1.19 × 10–2 μmol/m2).
History
Journal title
ACS Omega
Volume
1
Issue
4
Pagination
518-531
Publisher
American Chemical Society
Language
en, English
College/Research Centre
Faculty of Science
School
School of Environmental and Life Sciences
Rights statement
This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.