Open Research Newcastle
Browse

Prediction of game performance in Australian football using heart rate variability measures

Download (444.11 kB)
journal contribution
posted on 2025-05-09, 12:17 authored by David Cornforth, Piers Campbell, Keith NesbittKeith Nesbitt, Dean Robinson, Herbert F. Jelinek
In-match player performance, measured by data from Geographical Positioning System (GPS) devices, was predicted with a correlation coefficient of greater than 0.7. Predictions were based on heart rate variability measures and used advanced regression techniques based on machine learning. These techniques included methods for the selection of variables to be included in the regression study. Results indicate that variable selection using a wrapper subset method with a genetic algorithm outperformed both principal components analysis and the default method of using all variables. The success of prediction of match performance suggests a potential for new tools to assist the team coach in player selection and management of player training. This work also provides the possibility for a training programme to be adjusted specifically to meet the challenges of the size of the playing field and the temperature likely to be encountered on the day of the match.

History

Journal title

International Journal of Signal and Imaging Systems Engineering

Volume

8

Issue

1-2

Pagination

80-88

Publisher

Inderscience Publishers

Language

  • en, English

College/Research Centre

Faculty of Science and Information Technology

School

School of Design, Communication and Information Technology

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC