Open Research Newcastle
Browse

Power law of decaying homogeneous isotropic turbulence at low Reynolds number

Download (233.98 kB)
journal contribution
posted on 2025-05-10, 13:56 authored by P. Burattini, P. Lavoie, A. Agrawal, Lyazid Djenidi, Robert AntoniaRobert Antonia
We focus on an estimate of the decay exponent (m) in the initial period of decay of homogeneous isotropic turbulence at low Taylor microscale Reynolds number Rλ (≃20–50). Lattice Boltzmann simulations in a periodic box of 256³ points are performed and compared with measurements in grid turbulence at similar Rλ. Good agreement is found between measured and calculated energy spectra. The exponent m is estimated in three different ways: from the decay of the turbulent kinetic energy, the decay of the mean energy dissipation rate, and the rate of growth of the Taylor microscale. Although all estimates are close, as prescribed by theory, that from the Taylor microscale has the largest variability. It is then suggested that the virtual origin for the decay rate be determined from the Taylor microscale, but the actual value of m be estimated from the decay rate of the kinetic energy. The dependence of m on Rλ(0) (the value of Rλ at the beginning of the simulation) is also analyzed, using the present data as well as data from the literature. The results confirmed that m approaches 1, as Rλ(0) increases.

History

Journal title

Physical Review E

Volume

73

Issue

6

Publisher

American Physical Society

Language

  • en, English

College/Research Centre

Faculty of Science and Information Technology

School

School of Environmental and Life Sciences

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC