Open Research Newcastle
Browse

Optimization of commercial microwave assisted-extraction conditions for recovery of phenolics from lemon-scented tee tree (Leptospermum petersonii) and comparison with other extraction techniques

Download (1.93 MB)
journal contribution
posted on 2025-05-10, 19:07 authored by Md Saifullah, Taiwo AkanbiTaiwo Akanbi, Rebecca McCullum, Quan Van Vuong
The lemon-scented tea tree (LSTT) is an Australian native herb and is a rich source of essential oil and phenolics. The ETHOS X extraction system is known as a commercial microwave-assisted extraction (MAE) system for extracting bioactive compounds from plant materials. This study investigated the influence of soaking time, radiation time, microwave power, and sample to solvent ratio on the extraction efficiency of polyphenols and antioxidant properties from lemon-scented tea tree leaves and optimized the extraction conditions using response surface methodology (RSM). The effectiveness of ETHOS X was further compared with ultrasound-assisted extraction (UAE) and shaking water bath (SWB) techniques. The results revealed that soaking time did not significantly affect the recovery of phenolics from the leaves (p > 0.05). Thus, soaking is not required for the ETHOS X extraction of polyphenols from LSTT leaves. RSM was successfully applied to explore the impact of ETHOS X extraction conditions and optimize the extraction conditions. Radiation time significantly affects the recovery yield of phenolics (p < 0.05) positively, whereas irradiation power and sample to solvent ratio adversely influenced the extraction yields of phenolics. The optimal ETHOS X extraction conditions were: radiation time of 60 min, irradiation power of 600 W, and sample to solvent ratio of 2 g/100 mL. Under these conditions, 119.21 ± 7.09 mg of phenolic, 85.31 ± 4.55 mg of flavonoids, and 137.51 ± 12.52 mg of proanthocyanidins can be extracted from a gram of dried LSTT leaves. In comparison with UAE and SWB, ETHOS X is not more effective for the extraction of phenolics than UAE and SWB. However, this technique can save half of the solvent volume compared to UAE and SWB techniques.

History

Journal title

Foods

Volume

11

Issue

1

Publisher

MDPI AG

Language

  • en, English

College/Research Centre

College of Engineering, Science and Environment

School

School of Environmental and Life Sciences

Rights statement

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/4.0/).

Usage metrics

    Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC