Open Research Newcastle
Browse

Nanomaterials-based sensors for the detection of COVID-19: A review

Download (2.7 MB)
journal contribution
posted on 2025-05-10, 19:28 authored by Gowhar A. Naikoo, Fareeha Arshad, Israr U. Hassan, Tasbiha Awan, Hiba Salim, Mona Z. Pedram, Waqar Ahmed, Vaishwik PatelVaishwik Patel, Ajay S. Karakoti, Ajayan VinuAjayan Vinu
With the threat of increasing SARS-CoV-2 cases looming in front of us and no effective and safest vaccine available to curb this pandemic disease due to its sprouting variants, many countries have undergone a lockdown 2.0 or planning a lockdown 3.0. This has upstretched an unprecedented demand to develop rapid, sensitive, and highly selective diagnostic devices that can quickly detect coronavirus (COVID-19). Traditional techniques like polymerase chain reaction have proven to be time-inefficient, expensive, labor intensive, and impracticable in remote settings. This shifts the attention to alternative biosensing devices that can be successfully used to sense the COVID-19 infection and curb the spread of coronavirus cases. Among these, nanomaterial-based biosensors hold immense potential for rapid coronavirus detection because of their noninvasive and susceptible, as well as selective properties that have the potential to give real-time results at an economical cost. These diagnostic devices can be used for mass COVID-19 detection to understand the rapid progression of the infection and give better-suited therapies. This review provides an overview of existing and potential nanomaterial-based biosensors that can be used for rapid SARS-CoV-2 diagnostics. Novel biosensors employing different detection mechanisms are also highlighted in different sections of this review. Practical tools and techniques required to develop such biosensors to make them reliable and portable have also been discussed in the article. Finally, the review is concluded by presenting the current challenges and future perspectives of nanomaterial-based biosensors in SARS-CoV-2 diagnostics.

History

Journal title

Bioengineering and Translational Medicine

Volume

7

Issue

3

Article number

e10305

Publisher

John Wiley & Sons

Language

  • en, English

College/Research Centre

College of Engineering, Science and Environment

School

School of Engineering

Rights statement

© 2022 The Authors. This is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Usage metrics

    Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC