Open Research Newcastle
Browse

Mouse Emi2 is required to enter meiosis II by reestablishing cyclin B1 during interkinesis

Download (1.02 MB)
journal contribution
posted on 2025-05-09, 05:20 authored by Suzanne Madgwick, David V. Hansen, Mark Levasseur, Peter K. Jackson, Keith T. Jones
During interkinesis, a metaphase II (Metil) spindle is built immediately after the completion of meiosis I. Oocytes then remain Metll arrested until fertilization. In mouse, we find that early mitotic inhibitor 2 (Emi2), which is an anaphase-promoting complex inhibitor, is involved in both the establishment and the maintenance of Metil arrest. In Metll oocytes, Emi2 needs to be degraded for oocytes to exit meiosis, and such degradation, as visualized by fluorescent protein tagging, occurred tens of minutes ahead of cyclin B1. Emi2 antisense morpholino knockdown during oocyte maturation did not affect polar body (PB) extrusion. However, in interkinesis the central spindle microtubules from meiosis I persisted for a short time, and a Metll spindle failed to assemble. The chromatin in the oocyte quickly decondensed and a nucleus formed. All of these effects were caused by the essential role of Emi2 in stabilizing cyclin B1 after the first PB extrusion because in Emi2 knockdown oocytes a Metll spindle was recovered by Emi2 rescue or by expression of nondegradable cyclin B1 after meiosis I.

History

Journal title

Journal of Cell Biology

Volume

174

Issue

6

Pagination

791-801

Publisher

Rockefeller University Press

Language

  • en, English

College/Research Centre

Faculty of Health

School

School of Biomedical Sciences and Pharmacy

Usage metrics

    Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC