Open Research Newcastle
Browse

Model predictive control of an asymmetric flying capacitor converter

Download (1.12 MB)
journal contribution
posted on 2025-05-09, 05:23 authored by Pablo Lezana, Ricardo Aguilera, Daniel E. Quevedo
Multilevel converters and, in particular, flying capacitor (FC) converters are an attractive alternative for medium-voltage applications. FC converters do not need complex transformers to obtain the DC-link voltage and also present good robustness properties, when operating under internal fault conditions. Unfortunately, with standard modulation strategies, to increase the number of output voltage levels of FC converters, it is necessary to increase the number of cells and, hence, the number of capacitors and switches. In this paper, we develop a finite-state model predictive control strategy for FC converters. Our method controls output currents and voltages and also the FC voltage ratios. This allows one to increase the number of output voltage levels, even at high power factor load conditions and without having to increase the number of capacitors and switches. Experimental results illustrate that the proposed algorithm is capable of achieving good performance, despite possible parameter mismatch.

History

Journal title

IEEE Transactions on Industrial Electronics

Volume

56

Issue

6

Pagination

1839-1846

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Language

  • en, English

College/Research Centre

Faculty of Engineering and Built Environment

School

School of Electrical Engineering and Computer Science

Rights statement

Copyright © 2009 IEEE. Reprinted from IEEE Transactions on Industrial Electronics. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Newcastle's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC