posted on 2025-05-09, 04:21authored byYunlong Luo, Christopher T. Gibson, Youhong Tang, Xian Zhang, Ravendra NaiduRavendra Naidu, Cheng Fang
Little is known about the catastrophic bushfire from a micro-pollution point of view, and there is also very limited understanding of the emerging contamination of microplastics and nanoplastics. Upon exposure to fire, plastic items, such as water tanks, may release a substantial quantity of microplastics and nanoplastics, as characterized in this study through the analysis of residual debris. Using Raman imaging with the scanning pixel size down to 100 nm × 100 nm, we over-scan the sample surface to collect a hyperspectral matrix. In order to map and convert the scanning hyperspectral matrix to an image, we compare and advance the chemometrics of algorithms, including logic and principal component analysis (PCA), to extract the weak signal of microplastics and particularly nanoplastics, which enables us to directly visualize the different degrees of burning. By doing so, we can identify the microplastics and nanoplastics down to ˜100 nm, which means that we can break through the diffraction limit of the laser which is ˜296 nm (λ/2NA) to capture nanoplastics. Using statistical analysis, we estimate that 1.4–4.7 million micro- and nanoplastics per cm2 can be left behind by the mimicked-bushfire-burned plastic tank. This study suggests that bushfire can accelerate the release of micro- and nanoplastics in the environment. This study not only contributes essential insights into the micro-pollution consequences of fire burning but also underscores the urgency of addressing this understudied aspect to inform environmental conservation strategies and public health measures.
History
Journal title
Engineering Reports
Volume
6
Issue
10
Article number
e12875
Publisher
John Wiley & Sons
Language
en, English
College/Research Centre
College of Engineering, Science and Environment
School
Global Centre for Environmental Remediation (GCER)