Open Research Newcastle
Browse

Kinetics, isotherms and adsorption–Desorption behavior of phosphorus from aqueous solution using zirconium–iron and iron modified biosolid biochars

Download (4.22 MB)
journal contribution
posted on 2025-05-10, 18:55 authored by Mohammad RahmanMohammad Rahman, Dane Lamb, Anitha Kunhikrishnan
Excessive discharge of phosphorus (P) to aquatic ecosystems can lead to unpleasant eutrophication phenomenon. Removal and recovery of P is challenging due to low C/N ratios in wastewater, hence the development of efficient removal and recovery of P strategies is essential. In this study, zirconium–iron (Zr–FeBC) and iron modified (Fe–BC) biosolid biochars were examined to investigate their capacity for the removal of P by batch experiments. The influence of solution pH, biochar dose, initial P concentration, ionic strength, interfering ions and temperature were also studied to evaluate the P adsorption performance of biochars. The P experimental data were best described with pseudo-second order kinetics and the Freundlich isotherm model. The maximum P adsorption capacities were reached to 33.33 and 25.71 mg g−1 for 24 h by Zr–FeBC and Fe-BC at pH 5 and 4, respectively. Desorption studies were performed to investigate the reusability, cost-effectiveness and stability of the adsorbents Zr–FeBC and Fe-BC. The adsorption–desorption study suggests that both examined biochars have considerable potentiality as adsorbent candidates in removing as well as recovery of P from wastewaters. Results also reveal that the regenerated Zr–FeBC and Fe–BC could be utilized repetitively in seven adsorption–desorption cycles using NaOH as a desorbing agent, which greatly reduces the P-removal cost from wastewaters. Thus, P enriched biochar could potentially be used as fertilizer in the agriculture sector.

History

Journal title

Water

Volume

13

Issue

23

Article number

3320

Publisher

MDPI AG

Language

  • en, English

College/Research Centre

College of Engineering, Science and Environment

School

Global Centre for Environmental Remediation (GCER)

Rights statement

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).