Open Research Newcastle
Browse

Investigation of Hydrokinetic Tidal Energy Harvesting Using a Mangrove-Inspired Device

Download (4.4 MB)
journal contribution
posted on 2025-05-09, 21:06 authored by Jafar ZanganehJafar Zanganeh, Kiva Gwynne, Zhengbiao Peng, Behdad MoghtaderiBehdad Moghtaderi
There is a trend towards harvesting tidal energy in shallow water. This study examined how tidal energy can be harvested using a device of oscillating cylinders inspired by the roots of mangroves. A specific focus was placed on optimising the configuration of these devices, informed by the computational fluid dynamics (CFD) analysis of wake interference in the von Kármán vortex street of the cylinders. A maximum efficiency of 13.54% was achieved at a peak voltage of 16 mV, corresponding to an electrical power output of 0.0199 mW (13.5% of the hydrokinetic energy of the water) and a power density of 7.2 mW/m2 for a flow velocity of 0.04 m/s (Re=239). The configuration of upstream cylinders proved to have a significant impact on the power generation capacity, corroborated further in CFD simulations. The effect of wake interference was non-trivial on the magnitude and quality of power, with tandem arrangements showing the largest impact followed by staggered arrangements. Though with comparatively low energy densities, the device’s efficiencies found in this study indicate a great potential to harvest tidal energy in shallow water, which provides a consistent baseload power to supplement intermittent renewables (e.g., solar and wind).

History

Journal title

Sustainability

Volume

15

Issue

22

Article number

15886

Publisher

MDPI AG

Language

  • en, English

College/Research Centre

College of Engineering, Science and Environment

School

School of Engineering

Rights statement

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Usage metrics

    Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC