posted on 2025-05-11, 13:34authored byKonrad Engel, Thomas Kalinowski, Martin W. P. Savelsbergh
Given an edge-weighted graph <i>G</i>=(<i>V,E</i>) and a set <i>E</i><sub>0</sub>⊂<i>E</i>, the incremental network design problem with minimum spanning trees asks for a sequence of edges <i>e′</i><sub>1</sub>,…,<i>e′<sub>T</sub></i>∈<i>E</i>∖<i>E</i><sub>0</sub> minimizing [formula could not be replicated] where <i>w</i>(<i>Xt</i>) is the weight of a minimum spanning tree <i>X<sub>t</sub></i> for the subgraph (<i>V,E</i><sub>0</sub>∪{<i>e′</i><sub>1</sub>,…,<i>e′<sub>t</sub></i>}) and <i>T</i>=|<i>E</i>∖<i>E</i><sub>0</sub>|. We prove that this problem can be solved by a greedy algorithm.