Open Research Newcastle
Browse

In situ fabrication of green reduced graphene-based biocompatible anode for efficient energy recycle

Download (3.16 MB)
journal contribution
posted on 2025-05-10, 15:23 authored by Ying ChengYing Cheng, Megharaj MallavarapuMegharaj Mallavarapu, Ravendra NaiduRavendra Naidu, Zuliang Chen
Improving the anode configuration to enhance biocompatibility and accelerate electron shuttling is critical for efficient energy recovery in microbial fuel cells (MFCs). In this paper, green reduced graphene nanocomposite was successfully coated using layer-by-layer assembly technique onto carbon brush anode. The modified anode achieved a 3.2-fold higher power density of 33.7 W m−3 at a current density of 69.4 A m−3 with a 75% shorter start period. As revealed in the characterization, the green synthesized nanocomposite film affords larger surface roughness for microbial colonization. Besides, gold nanoparticles, which anchored on graphene sheets, promise the relatively high electroactive sites and facilitate electron transfer from electricigens to the anode. The reduction-oxidation peaks in cyclic voltammograms indicated the mechanism of surface cytochromes facilitated current generation while the electrochemical impedance spectroscopy confirmed the enhanced electron transfer from surface cytochrome to electrode. The green synthesis process has the potential to generate a high performing anode in further applications of MFCs.

History

Journal title

Chemosphere

Volume

193

Pagination

618-624

Publisher

Pergamon Press

Language

  • en, English

College/Research Centre

Faculty of Science

School

Global Centre for Environmental Remediation (GCER)

Rights statement

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.