Open Research Newcastle
Browse

Impact of desertification on soil and plant nutrient stoichiometry in a desert grassland

Download (1.63 MB)
journal contribution
posted on 2025-05-11, 15:45 authored by Hui An, Zhuangsheng Tang, Saskia Keesstra, Zhouping Shangguan
Grassland degradation resulting from desertification often alters the carbon (C), nitrogen (N) and phosphorus (P) cycles within grassland ecosystems. To estimate the effects of desertification on the C, N, and P concentrations and C:N:P stoichiometry of plants and soil, we examined C, N, and P concentrations in plant tissues (leaves, roots and litter) and soil across five degrees of desertification in the desert grassland of Ningxia, China (control, light, moderate, severe and very severe desertification stages). The C, N, and P concentrations and C:N:P stoichiometry of the leaves, roots and litter differed among the different desertification stages. Desertification resulted in opposing trends between the leaf N concentration and leaf C:N ratio. With the exception of the very severe desertification stage, the leaf N:P ratio decreased over the process of grassland desertification. The soil C, N, and P concentrations and soil N:P and C:P ratios decreased significantly along the grassland desertification gradient. In contrast, the soil C:N ratio remained relatively stable during desertification (10.85 to 11.48). The results indicate that desertification is unfavourable to C and N fixation and has a negative effect on the ecosystem structure and function of desert grassland.

History

Journal title

Scientific Reports

Volume

9

Article number

9422

Publisher

Nature Publishing Group

Language

  • en, English

College/Research Centre

Faculty of Engineering and Built Environment

School

School of Engineering

Rights statement

© The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Usage metrics

    Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC