Open Research Newcastle
Browse

Identification of three subtypes of triple-negative breast cancer with potential therapeutic implications

Download (4.33 MB)
journal contribution
posted on 2025-05-09, 18:54 authored by Pascal Jézéquel, Olivier Kerdraon, Hubert HondermarckHubert Hondermarck, Catherine Guerin-Charbonnel, Hamza Lasla, Wilfried Gouraud, Jean-Luc Canon, Andrea Gombos, Florence Dalenc, Suzette Delaloge, Jérôme Lemonnier, Delphine Loussouarn, Véronique Verrièle, Mario Campone
Background: Heterogeneity and lack of targeted therapies represent the two main impediments to precision treatment of triple-negative breast cancer (TNBC), and therefore, molecular subtyping and identification of therapeutic pathways are required to optimize medical care. The aim of the present study was to define robust TNBC subtypes with clinical relevance. Methods: Gene expression profiling by means of DNA chips was conducted in an internal TNBC cohort composed of 238 patients. In addition, external data (n = 257), obtained by using the same DNA chip, were used for validation. Fuzzy clustering was followed by functional annotation of the clusters. Immunohistochemistry was used to confirm transcriptomics results: CD138 and CD20 were used to test for plasma cell and B lymphocyte infiltrations, respectively; MECA79 and CD31 for tertiary lymphoid structures; and UCHL1/PGP9.5 and S100 for neurogenesis. Results: We identified three molecular clusters within TNBC: one molecular apocrine (C1) and two basal-likeenriched (C2 and C3). C2 presented pro-tumorigenic immune response (immune suppressive), high neurogenesis (nerve infiltration), and high biological aggressiveness. In contrast, C3 exhibited adaptive immune response associated with complete B cell differentiation that occurs in tertiary lymphoid structures, and immune checkpoint upregulation. External cohort subtyping by means of the same approach proved the robustness of these results. Furthermore, plasma cell and B lymphocyte infiltrates, tertiary lymphoid structures, and neurogenesis were validated at the protein levels by means of histological evaluation and immunohistochemistry. Conclusion: Our work showed that TNBC can be subcategorized in three different subtypes characterized by marked biological features, some of which could be targeted by specific therapies.

History

Journal title

Breast Cancer Research

Volume

21

Issue

1

Article number

65

Publisher

BioMed Central Ltd

Language

  • en, English

College/Research Centre

Faculty of Health and Medicine

School

School of Biomedical Sciences and Pharmacy

Rights statement

© Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Usage metrics

    Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC