Open Research Newcastle
Browse

Identification of the top TESS objects of interest for atmospheric characterization of transiting exoplanets with JWST

Download (2.86 MB)
journal contribution
posted on 2025-05-09, 04:39 authored by Benjamin J. Hord, Eliza M.-R. Kempton, Karen A. Collins, Kim K. McLeod, Edward J. Michaels, Teo Mocnik, Mayuko Mori, Georgia Mraz, Jose A. Muñoz, Norio Narita, Krupa Natarajan, Louise Dyregaard Nielsen, Hugh Osborn, Cristilyn N. Watkins, Enric Palle, Aviad Panahi, Riccardo Papini, Peter Plavchan, Alex S. Polanski, Adam Popowicz, Francisco J. Pozuelos, Samuel N. Quinn, Don J. Radford, Phillip A. Reed, Jacob Bean, Howard M. Relles, Malena Rice, Paul Robertson, Joseph E. Rodriguez, Lee J. Rosenthal, Ryan A. Rubenzahl, Nicole Schanche, Joshua Schlieder, Richard P. Schwarz, Ramotholo Sefako, Nicolas B. Cowan, Avi Shporer, Alessandro Sozzetti, Gregor Srdoc, Chris Stockdale, Alexander Tarasenkov, Thiam-Guan Tan, Mathilde Timmermans, Eric B. Ting, Judah Van Zandt, JP Vignes, Tansu Daylan, Ian Waite, Noriharu Watanabe, Lauren M. Weiss, Justin Wittrock, George Zhou, Carl Ziegler, Shay Zucker, Caroline V. Morley, Jegug Ih, David Baker, Khalid Barkaoui, Natalie M. Batalha, Thomas Evans-SomaThomas Evans-Soma, Aida Behmard, Alexander Belinski, Zouhair Benkhaldoun, Paul Benni, Krzysztof Bernacki, Allyson Bieryla, Avraham Binnenfeld, Pau Bosch-Cabot, François Bouchy, Valerio Bozza, David W. Latham, Rafael Brahm, Lars A. Buchhave, Michael Calkins, Ashley Chontos, Catherine A. Clark, Ryan Cloutier, Marion Cointepas, Kevin I. Collins, Dennis M. Conti, Ian J. M. Crossfield, David R. Ciardi, Fei Dai, Jerome P. de Leon, Georgina Dransfield, Courtney Dressing, Adam Dustor, Gilbert Esquerdo, Phil Evans, Sergio B. Fajardo-Acosta, Jerzy Fiolka, Raquel Fores-Toribio, Diana Dragomir, Antonio Frasca, Akihiko Fukui, Benjamin Fulton, Elise Furlan, Tianjun Gan, Davide Gandolfi, Mourad Ghachoui, Steven Giacalone, Emily A. Gilbert, Michaël Gillon, Knicole D. Colón, Eric Girardin, Erica Gonzales, Ferran Grau Horta, Joao Gregorio, Michael Greklek-McKeon, Pere Guerra, J. D. Hartman, Coel Hellier, Ian Helm, Krzysztof G. Helminiak, Gabrielle Ross, Thomas Henning, Michelle L. Hill, Keith Horne, Andrew W. Howard, Steve B. Howell, Daniel Huber, Giovanni Isopi, Emmanuel Jehin, Jon M. Jenkins, Eric L. N. Jensen, Andrew Vanderburg, Marshall C. Johnson, Andrés Jordán, Stephen R. Kane, John F. Kielkopf, Vadim Krushinsky, Sławomir Lasota, Elena Lee, Pablo Lewin, John H. Livingston, Jack Lubin, Zoe L. de Beurs, Michael B. Lund, Franco Mallia, Christopher R. Mann, Giuseppi Marino, Nataliia Maslennikova, Bob Massey, Rachel Matson, Elisabeth Matthews, Andrew W. Mayo, Tsevi Mazeh
JWST has ushered in an era of unprecedented ability to characterize exoplanetary atmospheres. While there are over 5000 confirmed planets, more than 4000 Transiting Exoplanet Survey Satellite (TESS) planet candidates are still unconfirmed and many of the best planets for atmospheric characterization may remain to be identified. We present a sample of TESS planets and planet candidates that we identify as "best-in-class" for transmission and emission spectroscopy with JWST. These targets are sorted into bins across equilibrium temperature Teq and planetary radius Rp and are ranked by a transmission and an emission spectroscopy metric (TSM and ESM, respectively) within each bin. We perform cuts for expected signal size and stellar brightness to remove suboptimal targets for JWST. Of the 194 targets in the resulting sample, 103 are unconfirmed TESS planet candidates, also known as TESS Objects of Interest (TOIs). We perform vetting and statistical validation analyses on these 103 targets to determine which are likely planets and which are likely false positives, incorporating ground-based follow-up from the TESS Follow-up Observation Program to aid the vetting and validation process. We statistically validate 18 TOIs, marginally validate 31 TOIs to varying levels of confidence, deem 29 TOIs likely false positives, and leave the dispositions for four TOIs as inconclusive. Twenty-one of the 103 TOIs were confirmed independently over the course of our analysis. We intend for this work to serve as a community resource and motivate formal confirmation and mass measurements of each validated planet. We encourage more detailed analysis of individual targets by the community.

History

Journal title

The Astronomical Journal

Volume

167

Issue

5

Article number

233

Publisher

Institute of Physics Publishing

Language

  • en, English

College/Research Centre

College of Engineering, Science and Environment

School

School of Information and Physical Sciences

Rights statement

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Usage metrics

    Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC