Open Research Newcastle
Browse

Hierarchical clustering using the arithmetic-harmonic cut: complexity and experiments

Download (281.91 kB)
journal contribution
posted on 2025-05-11, 23:01 authored by Romeo Rizzi, Pritha Mahata, Luke Mathieson, Pablo MoscatoPablo Moscato
Clustering, particularly hierarchical clustering, is an important method for understanding and analysing data across a wide variety of knowledge domains with notable utility in systems where the data can be classified in an evolutionary context. This paper introduces a new hierarchical clustering problem defined by a novel objective function we call the arithmeticharmonic cut. We show that the problem of finding such a cut is NP-hard and APX-hard but is fixed-parameter tractable, which indicates that although the problem is unlikely to have a polynomial time algorithm (even for approximation), exact parameterized and local search based techniques may produce workable algorithms. To this end, we implement a memetic algorithm for the problem and demonstrate the effectiveness of the arithmetic-harmonic cut on a number of datasets including a cancer type dataset and a corona virus dataset. We show favorable performance compared to currently used hierarchical clustering techniques such as k-MEANS, Graclus and NORMALIZED-CUT. The arithmetic-harmonic cut metric overcoming difficulties other hierarchal methods have in representing both intercluster differences and intracluster similarities.

History

Journal title

Plos One

Volume

5

Issue

12

Publisher

Public Library of Science

Language

  • en, English

College/Research Centre

Faculty of Engineering and Built Environment

School

School of Electrical Engineering and Computer Science

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC