posted on 2025-05-11, 20:53authored byLivia Salvati Manni, Wye FongWye Fong, Kathleen Wood, Nigel Kirby, Susanne Seibt, Rob Atkin, Gregory G. Warr
Hypothesis: The self-assembly structures and phase behaviour of phospholipids in protic ionic liquids (ILs) depend on intermolecular forces that can be controlled through changes in the size, polarity, and H-bond capacity of the solvent. Experiments: The structure and temperature stability of the self-assembled phases formed by four phospholipids in three ILs was determined by a combination of small- and wide-angle X-ray scattering (SAXS and WAXS) and small-angle neutron scattering (SANS). The phospholipids have identical phosphocholine head groups but different alkyl tail lengths and saturations (DOPC, POPC, DPPC and DSPC), while the ILs' amphiphilicity, H-bond network density and polarity are varied between propylammonium nitrate (PAN) to ethylammonium nitrate (EAN) to ethanolammonium nitrate (EtAN). Findings: The observed structures and phase behaviour of the lipids becomes more surfactant-like with decreasing average solvent polarity, H-bond network density and surface tension. In PAN, all the investigated phospholipids behave like surfactants in water. In EAN they exhibit anomalous phase sequences and unexpected transitions as a function of temperature, while EtAN supports structures that share characteristics with water and EAN. Structures formed are also sensitive to proximity to the lipid chain melting temperature.