posted on 2025-05-11, 18:17authored byJason S. Kimberley, Guyan Robertson
Let T₁ and T₂ be homogeneous trees of even degree ≥ 4. A BM group Γ is a torsion-free discrete subgroup of Aut(T₁)×Aut(T₂) which acts freely and transitively on the vertex set of T₁×T₂. This article studies dynamical systems associated with BM groups. A higher rank Cuntz-Krieger algebra A(Γ) is associated both with a 2-dimensional tiling system and with a boundary action of a BM group Γ. An explicit expression is given for the K-theory of A(Γ). In particular K₀=K₁. A complete enumeration of possible BM groups Γ is given for a product homogeneous trees of degree 4, and the K-groups are computed.
History
Journal title
New York Journal of Mathematics
Volume
8
Pagination
111-131
Publisher
Electronic Journals Project, University at Albany, Department of Mathematics & Science