Open Research Newcastle
Browse

Goodness-of-fit, identifiability and extrapolation: Can the Two-Component Extreme Value distribution be used in at-site flood frequency analysis

Download (7.81 MB)
journal contribution
posted on 2025-05-09, 22:11 authored by Vincenzo Totaro, George KuczeraGeorge Kuczera, Vito Iacobellis
When fitting three-parameter flood frequency models to annual maximum (AM) flood series, the lack-of-fit can be mitigated by censoring potentially influential low flows (PILFs). An alternative and less-studied approach is to apply mixture probability models with four or more parameters, which trade off greater flexibility to fit AM series against the need to deal with degeneracy which arises when there is insufficient information to identify mixture components. However, the issue of degeneracy and the lack of a robust inference framework present a significant barrier to adoption. This study investigated the potential of the most parsimonious mixture model, the four-parameter Two-Component Extreme Value (TCEV) model. A Bayesian framework using Markov chain Monte Carlo sampling was developed to robustly characterize parameter uncertainty even in the presence of degeneracy. Two new posterior diagnostics based on the strength of the TCEV components were developed to aid identification of degeneracy. Armed with a robust inference framework, the study evaluated the potential of TCEV using a case study based on 31 catchments in eastern Australia with records exceeding 70 years. The evaluation used short to long records to compare TCEV and Log Pearson III fit and extrapolative uncertainty. The Log Pearson approach (LP3-PILF) censors PILFs following the approach described in Australian Rainfall and Runoff. With respect to goodness-of-fit, we found in most cases that TCEV fitted AM flood peaks well without the need to censor or stratify data, and overall, no clear difference emerged between TCEV and LP3-PILF. However, and contrary to expectation, TCEV produced high flow quantile confidence intervals consistently narrower than LP3-PILF even in the presence of degeneracy. While more case studies in different regions are needed to confirm the potential of TCEV, this study is a reminder that goodness-of-fit is a necessary but not sufficient criterion for selecting the probability model that best represents flood frequency.

History

Journal title

Journal of Hydrology

Volume

640

Issue

August 2024

Article number

131590

Publisher

Elsevier BV

Language

  • en, English

College/Research Centre

College of Engineering, Science and Environment

School

School of Engineering

Rights statement

© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Usage metrics

    Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC