posted on 2025-05-11, 23:40authored byMeng Li, Yu Wang, Yang Zheng, Gengtao Fu, Dongmei Sun, Yafei Li, Yawen Tang, Tianyi Ma
Rare earth doped materials with unique electronic ground state configurations are considered emerging alternatives to conventional Pt/C for the oxygen reduction reaction (ORR). Herein, gadolinium (Gd)-induced valence structure engineering is, for the first, time investigated for enhanced oxygen electrocatalysis. The Gd₂O₃-Co heterostructure loaded on N-doped graphene (Gd₂O₃-Co/NG) is constructed as the target catalyst via a facile sol-gel assisted strategy. This synthetic strategy allows Gd₂O₃-Co nanoparticles to distribute uniformly on an N-graphene surface and form intimate Gd₂O₃/Co interface sites. Upon the introduction of Gd₂O₃, the ORR activity of Gd₂O₃-Co/NG is significantly increased compared with Co/NG, where the half-wave potential (E1/2) of Gd₂O₃-Co/NG is 100 mV more positive than that of Co/NG and even close to commercial Pt/C. The density functional theory calculation and spectroscopic analysis demonstrate that, owing to intrinsic charge redistribution at the engineered interface of Gd₂O₃/Co, the coupled Gd₂O₃-Co can break the OOH*-OH* scaling relation and result in a good balance of OOH* and OH* binding on Gd₂O₃-Co surface. For practical application, a rechargeable Zn-air battery employing Gd₂O₃-Co/NG as an air-cathode achieves a large power density and excellent charge-discharge cycle stability.
Funding
ARC
DE150101306
LP160100927
History
Journal title
Advanced Energy Materials
Volume
10
Issue
10
Article number
1903833
Publisher
Wiley
Place published
Weinheim, Germany
Language
en, English
College/Research Centre
Faculty of Science
School
School of Environmental and Life Sciences
Rights statement
This is the peer reviewed version of the following article: Li, Meng; Wang, Yu; Zheng, Yang; Fu, Gengtao; Sun, Dongmei; Li, Yafei; Tang, Yawen; Ma, Tianyi. “Gadolinium-induced valence structure engineering for enhanced oxygen electrocatalysis”. Advanced Energy Materials Vol. 10, Issue 10, no. 1903833, which has been published in final form at http://dx.doi.org/10.1002/aenm.201903833. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited..