Open Research Newcastle
Browse

GPU-FS-kNN: a software tool for fast and scalable kNN computation using GPUs

Download (1.11 MB)
journal contribution
posted on 2025-05-10, 09:28 authored by Ahmed Shamsul Arefin, Ricardo RiverosRicardo Riveros, Regina BerrettaRegina Berretta, Pablo MoscatoPablo Moscato
Background: The analysis of biological networks has become a major challenge due to the recent development of high-throughput techniques that are rapidly producing very large data sets. The exploding volumes of biological data are craving for extreme computational power and special computing facilities (i.e. super-computers). An inexpensive solution, such as General Purpose computation based on Graphics Processing Units (GPGPU), can be adapted to tackle this challenge, but the limitation of the device internal memory can pose a new problem of scalability. An efficient data and computational parallelism with partitioning is required to provide a fast and scalable solution to this problem. Results: We propose an efficient parallel formulation of the k-Nearest Neighbour (kNN) search problem, which is a popular method for classifying objects in several fields of research, such as pattern recognition, machine learning and bioinformatics. Being very simple and straightforward, the performance of the kNN search degrades dramatically for large data sets, since the task is computationally intensive. The proposed approach is not only fast but also scalable to large-scale instances. Based on our approach, we implemented a software tool GPU-FS-kNN (GPU-based Fast and Scalable k-Nearest Neighbour) for CUDA enabled GPUs. The basic approach is simple and adaptable to other available GPU architectures. We observed speed-ups of 50–60 times compared with CPU implementation on a well-known breast microarray study and its associated data sets. Conclusion: Our GPU-based Fast and Scalable k-Nearest Neighbour search technique (GPU-FS-kNN) provides a significant performance improvement for nearest neighbour computation in large-scale networks. Source code and the software tool is available under GNU Public License (GPL) at https://sourceforge.net/p/gpufsknn/.

Funding

ARC

History

Journal title

PLoS One

Volume

7

Issue

8

Publisher

Public Library of Science

Language

  • en, English

College/Research Centre

Faculty of Engineering and Built Environment

School

School of Electrical Engineering and Computer Science

Rights statement

© 2012 Arefin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Usage metrics

    Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC