The next big change in various industry applications is associated with power dense motors, such as permanent magnet synchronous motors (PMSMs). Utilization of multiphase PMSM can offer an additional fault-tolerant capability to their applications. Combining both advantages, this paper proposes a simple yet robust current control strategy for a five-phase PMSM under normal operation and in a case of a loss of one phase. Traditional linear current controllers successfully applied to reference tracking of a healthy motor may become less efficient during postfault operation due to additional unmodeled dynamics. This paper proposes a modified angular transformation to a special rotating frame in which the postfault permanent magnet flux linkage remains unchanged and the motor model remains decoupled. Following this, a nonlinear current control scheme based on sliding mode control is proposed, which successfully treats model inaccuracies and provides good dynamic performance and tracking accuracy. Feasibility of the proposed control strategy is experimentally validated on a laboratory scale PMSM motor with a digital signal processor/field programmable gate array based drive.
History
Journal title
IEEE Transactions on Industry Applications
Volume
54
Issue
4
Pagination
3943-3952
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Language
en, English
College/Research Centre
Faculty of Engineering and Built Environment
School
School of Electrical Engineering and Computer Science