Open Research Newcastle
Browse

Experimental Analysis of Incipient Motion for Uniform and Graded Sediments

Download (3.23 MB)
journal contribution
posted on 2025-05-09, 18:04 authored by Khabat Khosravi, Amir H. N. Chegini, Luca Mao, Jose RodriguezJose Rodriguez, Patricia M. Saco, Andrew D. Binns
So far, few studies have focused on the concept of critical flow velocity rather than bed shear stress for incipient sediment motion. Moreover, few studies have focused on sediment mixtures (graded sediment) and shape rather than uniform sediment for incipient motion condition. Different experiments were conducted at a hydraulic laboratory at the University of Guilan in 2015 to determine hydraulic parameters on the incipient motion condition. The aim of this study is to conduct a comparison between uniform and graded sediments, and a comparison between round and angular sediments. Experiments included rounded uniform bed sediments of 5.17, 10.35, 14 and 20.7 mm, angular uniform sediment of 10.35 mm, and graded sediment. Results demonstrated that angular sediment has a higher critical shear velocity than rounded sediment for incipient motion. Results also showed that for a given bed sediment, although critical shield stress and relative roughness increased with the bed slope, the particle Froude number (based on critical velocity) decreased. In terms of the sediment mixture, the critical shear stress (Vc*) was higher for the graded sediment than for the three finer uniform sediment sizes. The finer fractions of the mixture have a higher particle Froude number than their corresponding uniform sediment value, while the coarser fractions of the mixture showed a lower stability than their corresponding uniform sediment value. Results demonstrated that the reduction in the particle Froude number was more evident in lower relative roughness conditions. The current study provides a clearer insight into the interaction between initial sediment transport and flow characteristic, especially particle Froude number for incipient motion in natural rivers where stream beds have different gravel size distribution.

History

Journal title

Water

Volume

13

Issue

13

Article number

1874

Publisher

MDPI AG

Language

  • en, English

College/Research Centre

College of Engineering, Science and Environment

School

School of Engineering

Rights statement

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Usage metrics

    Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC