Open Research Newcastle
Browse

Evaluation of different topographic corrections for landsat TM data by prediction of foliage projective cover (FPC) in topographically complex landscapes

Download (1.43 MB)
journal contribution
posted on 2025-05-08, 19:19 authored by Sisira Ediriweera, Sumith Pathirana, Tim Danaher, Doland Nichols, Trevor Moffiet
The reflected radiance in topographically complex areas is severely affected by variations in topography; thus, topographic correction is considered a necessary pre-processing step when retrieving biophysical variables from these images. We assessed the performance of five topographic corrections: (i) C correction (C), (ii) Minnaert, (iii) Sun Canopy Sensor (SCS), (iv) SCS + C and (v) the Processing Scheme for Standardised Surface Reflectance (PSSSR) on the Landsat-5 Thematic Mapper (TM) reflectance in the context of prediction of Foliage Projective Cover (FPC) in hilly landscapes in north-eastern Australia. The performance of topographic corrections on the TM reflectance was assessed by (i) visual comparison and (ii) statistically comparing TM predicted FPC with ground measured FPC and LiDAR (Light Detection and Ranging)-derived FPC estimates. In the majority of cases, the PSSSR method performed best in terms of eliminating topographic effects, providing the best relationship and lowest residual error when comparing ground measured FPC and LiDAR FPC with TM predicted FPC. The Minnaert, C and SCS + C showed the poorest performance. Finally, the use of TM surface reflectance, which includes atmospheric correction and broad Bidirectional Reflectance Distribution Function (BRDF) effects, seemed to account for most topographic variation when predicting biophysical variables, such as FPC.

History

Journal title

Remote Sensing

Volume

5

Issue

12

Pagination

6767-6789

Publisher

MDPI AG

Language

  • en, English

College/Research Centre

Faculty of Science and Information Technology

School

School of Mathematical and Physical Sciences

Rights statement

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

Usage metrics

    Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC