The paper presents the results of a comprehensive experimental programme carried out to study the effects of relative humidity cycling on the degradation of argillaceous rocks. Lilla claystone, a lowporosity Tertiary rock, was used for this purpose. Four aspects were analysed: (a) the influence of the number of relative humidity cycles; (b) the amplitude of relative humidity cycles; (c) the stress level; and (d) the effects of using liquid water or vapour during wetting paths. The application of relative humidity cycles induced a progressive degradation of the rock in terms of accumulative irreversible volumetric swelling, irreversible reduction in rock stiffness, and tensile strength. The irreversible expansion increased with the amplitude of the relative humidity change. However, it reduced with increase of the confining pressure. This irreversible behaviour accelerated when liquid water was used during the wetting paths. Microstructural analysis has shown that the degradation pattern of Lilla claystone was associated mainly with fissuring, as a consequence of non-uniform deformations of the clayey matrix. This phenomenon leads to the opening of fissures at the weaker interfaces of the clayey matrix with detrital, non-active minerals. A damage law derived in terms of the accumulated volumetric irreversible strain has been proposed to represent the progressive loss in volumetric and shear stiffness as well as the tensile strength.
History
Journal title
Geotechnique
Volume
64
Issue
1
Pagination
64-82
Publisher
ICE Publishing
Place published
London
Language
en, English
College/Research Centre
Faculty of Engineering and Built Environment
School
School of Engineering
Rights statement
Permission is granted by ICE Publishing to print one copy for personal use. Any other use of these PDF files is subject to reprint fees