Open Research Newcastle
Browse

Enhancing nutrient recovery from food waste anaerobic digestate

Download (3.32 MB)
journal contribution
posted on 2025-05-09, 03:22 authored by James O'Connor, Bede S. Mickan, Sun K. Gurung, Kadambot H. M. Siddique, Matthias Leopold, Nanthi S. Bolan
The study synthesised the raw liquid fraction of digestate into a nutrient rich solid digestate through acidification whilst preventing nitrogen loss through ammonium volatilisation during evaporation. To stabilise ammonium in the digestate, it was acidified with sulphuric, nitric, and phosphoric acid to produce solid digestate with ammonium sulphate, ammonium nitrate and ammonium phosphate, respectively. These treatments were compared against urea ammonium nitrate, raw digestate, and unacidified solid digestate. To evaluate the effect of these transformed digestate products in soil, a plant growth experiment (Kikuyu; Cenchrus clandestinus) was conducted, and characterised, plant growth, soil chemistry, and rhizosphere bacterial communities. Plant growth was enhanced by all digestate treatments compared to control and urea ammonium nitrate. Ammonium phosphate solid digestate plant growth was significantly higher than all other acidified treatments due to the high P content. Moreover, digestate-amended soil had elevated Proteobacteria and putative denitrification genes.

History

Journal title

Bioresource Technology

Volume

390

Issue

December 2023

Article number

129869

Publisher

Elsevier

Language

  • en, English

College/Research Centre

College of Engineering, Science and Environment

School

School of Engineering

Rights statement

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Usage metrics

    Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC