Open Research Newcastle
Browse

Enhanced regeneration of degraded polymer solar cells by thermal annealing

Download (635.2 kB)
journal contribution
posted on 2025-05-11, 23:20 authored by Pankaj Kumar, Chhinder Bilen, Krishna Feron, Xiaojing ZhouXiaojing Zhou, Warwick BelcherWarwick Belcher, Paul DastoorPaul Dastoor
The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and P3HT:indene-C60 bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ∼50% performance restoration over several degradation/regeneration cycles.

Funding

Australian Government, through the Australian Renewable Energy Agency

History

Journal title

Applied Physics Letters

Volume

104

Issue

19

Publisher

American Institute of Physics

Language

  • en, English

College/Research Centre

Faculty of Science and Information Technology

School

School of Mathematical and Physical Sciences

Rights statement

© American Institute of Physics

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC