Open Research Newcastle
Browse

Elements of a flexible approach for conceptual hydrological modeling: 1. motivation and theoretical development

Download (888.08 kB)
journal contribution
posted on 2025-05-11, 09:28 authored by Fabrizio Fenicia, Dmitri Kavetski, Hubert H. G. Savenije
This paper introduces a flexible framework for conceptual hydrological modeling, with two related objectives: (1) generalize and systematize the currently fragmented field of conceptual models and (2) provide a robust platform for understanding and modeling hydrological systems. In contrast to currently dominant ‘‘fixed’’ model applications, the flexible framework proposed here allows the hydrologist to hypothesize, build, and test different model structures using combinations of generic components. This is particularly useful for conceptual modeling at the catchment scale, where limitations in process understanding and data availability remain major research and operational challenges. The formulation of the model architecture and individual components to represent distinct aspects of catchment-scale function, such as storage, release, and transmission of water, is discussed. Several numerical strategies for implementing the model equations within a computationally robust framework are also presented. In the companion paper, the potential of the flexible framework is examined with respect to supporting more systematic and stringent hypothesis testing, for characterizing catchment diversity, and, more generally, for aiding progress toward more unified hydrological theory at the catchment scale.

History

Journal title

Water Resources Research

Volume

47

Issue

11

Publisher

American Geophysical Union

Language

  • en, English

College/Research Centre

Faculty of Engineering and Built Environment

School

School of Engineering

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC