Open Research Newcastle
Browse

Effects of gape and tooth position on bite force and skull stress in the dingo (Canis lupus dingo) using a 3-dimensional finite element approach

Download (218.79 kB)
journal contribution
posted on 2025-05-09, 18:47 authored by Jason Bourke, Stephen Wroe, Karen Moreno, Colin McHenryColin McHenry, Philip ClausenPhilip Clausen
Models of the mammalian jaw have predicted that bite force is intimately linked to jaw gape and to tooth position. Despite widespread use, few empirical studies have provided evidence to validate these models in ono-human mammals and none have considered the influence of gape angle on the distribution of stress. Here using a multi-property finite element (FE) model of Canis lupus dingo, we exmained the influence of gape angle and bite point on both bite force and cranial stress. Bite force data in relation to jaw gape and along the tooth row, are in broad agreement with previously reported results. However stress data showed that the skull of C. I. dingo is mechanically suited to withstand stresses at wide gapes; a result that agreed well with previously held views regarding carnivoran evolution. Stress data, combined with bite force information, suggested that there us an optimal bite angle of between 25° and 35° in C. I. dingo. The function of these rather small bite angles remains unclear.

History

Journal title

PLoS ONE

Volume

3

Issue

5

Publisher

Public Library of Science

Language

  • en, English

College/Research Centre

Faculty of Science and Information Technology

School

School of Environmental and Life Sciences

Usage metrics

    Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC