Open Research Newcastle
Browse

Effect of divalent and monovalent salts on interfacial dilational rheology of Sodium dodecylbenzene sulfonate solutions

Download (2.08 MB)
journal contribution
posted on 2025-05-09, 18:18 authored by Pouria AmaniPouria Amani, Mahshid FirouziMahshid Firouzi
This study presents the equilibrium surface tension (ST), critical micelle concentration (CMC) and the dilational viscoelasticity of sodium dodecylbenzene sulfonate (SDBS)-adsorbed layers in the presence of NaCl, KCl, LiCl, CaCl2 and MgCl2 at 0.001–0.1 M salt concentration. The ST and surface dilational viscoelasticity were determined using bubble-shape analysis technique. To capture the complete profile of dilational viscoelastic properties of SDBS-adsorbed layers, experiments were conducted within a wide range of SDBS concentrations at a fixed oscillating frequency of 0.01 Hz. Salts were found to lower the ST and induce micellar formation at all concentrations. However, the addition of salts increased dilational viscoelastic modulus only at a certain range of SDBS concentration (below 0.01–0.02 mM SDBS). Above this concentration range, salts decreased dilational viscoelasticity due to the domination of the induced molecular exchange dampening the ST gradient. The dilational viscoelasticity of the salts of interest were in the order CaCl2 > MgCl2 > KCl > NaCl > LiCl. The charge density of ions was found as the corresponding factor for the higher impact of divalent ions compared to monovalent ions, while the impact of monovalent ions was assigned to the degree of matching in water affinities, and thereby the tendency for ion-pairing between SDBS head groups and monovalent ions.

Funding

ARC

LP170100659

History

Journal title

Colloids and Interfaces

Volume

6

Issue

3

Article number

41

Publisher

MDPI AG

Language

  • en, English

College/Research Centre

College of Engineering, Science and Environment

School

School of Engineering

Rights statement

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Usage metrics

    Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC